

LA-UR-21-22613

Approved for public release; distribution is unlimited.

Title: Introduction to Nuclear Criticality Safety

Author(s): Bowles Tomaszewski, Amanda Sue

Calhoun, Norann Nell

Intended for: NEST Lecture - UNM LA

Issued: 2021-03-17

Introduction to Nuclear Criticality Safety

Mandy Bowles Tomaszewski Norann Calhoun

Nuclear Criticality Safety Division

Agenda

- 1. Why Criticality Safety?
- 2. Neutronics
- 3. The Science
- 4. The Art

Why Criticality Safety?

A Review of Criticality Accidents - LA 13638

Historical Accidents

- Critical Assemblies/Reactor Experiments
- > 50,000 experiments
 - Designed to determine critical point
- 38 accidents 12 Deaths
 - Severe damage to the system
 - Severe over exposures to humans
 - Physically unpredicted or equipment malfunction
- Process Facility Accidents
- Tens-of-millions of operations since 1943
 - Designed with largest practical safety margins
- 22 accidents
 - 21 involving solution/slurry
 - 4 involving chemistry "gone bad"
 - 1 involving metal ingots

Historical Frequency

- About one to two process accidents per year for about ten years.
- Then, about one per ten years.

3/16/21

Harry K. Daghlian, Jr.

- Master's from Purdue in 1944
- Worked in Otto Frisch's criticality group, determining critical masses.
- Experimenting with plutonium sphere
 - Trying to determine amount of tungsten-carbide needed to make Pu sphere go critical
 - ~6 kg δ-phase Pu metal
 - Stack tungsten-carbide bricks around Pu until clicks from neutron detector nearly continuous and multiplication roughly 100

21 August 1945

Reenactment of the configuration with about half of the tungsten blocks in place.

- Working alone, late at night
 - Accident ~9:55pm
- One guard in the room
- Daghlian was moving final brick over assembly
- Neutron counter alerted him assembly would be super critical with addition of final brick
- Withdrew hand, brick slipped and fell on top of the assembly
- System went super critical
- Passed away 28 days later

Louis Slotin

- Canadian Physicist (PhD)
- Part of team that assembled the Gadget at Trinity
- Arguably most experienced criticality person in the world
- Experimenting with same Pu sphere as Daghlian
 - Trying to determine how much beryllium reflector necessary to make it go critical
- Demonstrating experiment for group of people
 - Eight people in the room

Louis Slotin

21 May 1946

- Spacers not in place between hemishells
 - Spacing being controlled by Slotin with screwdriver
- Screwdriver slipped, closing reflector
- System went super critical
- Room evacuated and doses measured

Passed away 9 days later

What IS Nuclear Criticality Safety?

The prevention or termination of inadvertent nuclear chain reactions in nonreactor environments.

The art of avoiding a nuclear excursion.

Criticality Safety is the **art** and **science** of preventing criticality accidents and ensuring that anyone that could be exposed to one makes it home alive at the end of the day.

What is an atom?

- The structure of an atom is made up of more
- fundamental particles, or <u>subatomic particles</u>:
- Proton: a particle with a positive charge found at
- center of the atom
- Neutron: a particle with no charge found at the center of the
- atom
- <u>Electron</u>: a light and very small particle with a negative charge found in the region far from the nucleus
- <u>Isotope</u>: Variant of a particular chemical element which differ in neutron number. All isotopes of a given element have the same number of protons but different numbers of neutrons in each atom.
- <u>Fission:</u> A process in which the nucleus of an atom splits into two or more smaller, lighter nuclei.

1 H																	Helium
3 Li	Beryllium						5 B Boron	6 C Carbon	7 N Nitrogen	8 O Oxygen	9 F	Ne Neon					
Na Sodium	Mg Magnesium						13 Al Aluminium	Silicon	Phosphorus	16 S Sulfur	17 Cl Chlorine	Argon					
19 K	Ca Calcium	Scandium	Ti Titanium	V Vanadium	Cr Chromium	Mn Manganese	Fe Iron	Co Cobalt	Ni Nickel	Cu Copper	Zn Zinc	Gallium	Ge Germanium	AS Arsenic	Selenium	Br Bromine	36 Kr Krypton
Rubidium	38 Sr Strontium	39 Y Yttrium	40 Zr	Nb Niobium	Mo Molybdenum	Tc	Ruthenium	Rh Rhodium	Palladium	Ag Silver	48 Cd	49 In	Sn Tin	Sb Antimony	Te Tellurium	53 lodine	Xe Xenon
55 Cs Cesium	56 Ba Barium	57–71 La–Lu Lanthanides	72 Hf Hafnium	73 Ta	74 W Tungsten	75 Re	76 Os Osmium	77 Ir Iridium	78 Pt Platinum	79 Au Gold	80 Hg Mercury	81 TI	Pb Lead	Bi Bismuth	Polonium	At Astatine	Radon
87 Fr	Ra Radium	89–103 AC-Lr Actinides	104 Rf Rutherfordium	Db Dubnium	106 Sg Seaborgium	107 Bh	108 Hs Hassium	109 Mt Meitnerium	DS Darmstadtium	Roentgenium	Cn Copernicium	113 Nh	114 Fl	MC Moscovium	116 LV Livermorium	TS Tennessine	118 Og Oganesson
		57 La	58 Ce	Pr	Nd	61 Pm	Sm	Eu	Gd Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	⁷⁰ Yb	71 Lu	
		Actinium	90 Th Thorium	91 Pa Protactinium	92 U Uranium	93 Np Neptunium	94 Pu Plutonium	95 Am Americium	96 Cm Curium	97 Bk Berkelium	98 Cf Californium	99 Es Einsteinium	100 Fm	Thulium 101 Md Mendelevium	No Nobelium	103 Lr Lawrencium	

Chart of the Nuclides - Isotopes

Criticality Safety Parameters

- Mass
- Absorption (Neutron Poisons)
- Geometry
- Interaction (Spacing)
- Concentration (Density)
- Moderation
- Enrichment
- Reflection
- Volume

Geometry (Shape)

- Equivalent volumes
 - Cube surface area is 600 units
 - Sphere surface area is 483.6 units
 - Sphere has 19% less surface area for the same enclosed material
 - Leakage is higher in cube

Interaction (Spacing)

- When two container are widely separated, few neutrons escaping from one will hit the other
- When two containers are placed close to each other, neutrons escaping from one will be more likely to hit the other

Interaction (Spacing)

Concentration (Density)

- Concentration of Number of Fissionable Atoms in Equal Volumes
- Usually in reference to fissionable solution
- More atoms for neutrons to interact with and cause fission.

Moderation (Macro System Property)

- Neutrons are born with 'fast' energy
- Neutrons are more likely to fission with 'slow' energy
- Moderating material 'slows' neutrons down
- More slow neutrons means more fissionable material absorption
 - More absorption means more fissions
 - More fissions makes a self-sustaining chain reaction easier
- Water, Graphite, Beryllium, Hydrocarbons (oils) etc.

Enrichment (Fissionable Isotope ratio)

 Uranium from natural sources is enriched (²³⁵U) by isotope separation, and plutonium (Pu(0)) is produced in a suitable nuclear reactor

Enrichment Simulation

Reflection

- Certain material reflect neutrons reflects neutrons.
- The material may be water, graphite, beryllium, steel, tungsten carbide or other high Z materials.

Homework

- Name 9 Criticality Safety Parameters (MAGIC MERV) and describe how they are controlled.
- Read about the following accidents found in LA-13638 and be prepared to discuss.
 - Idaho Chemical Reprocessing 17 October 1978 (Page 18)
 - Los Alamos –30 December 1958 (Page 47)
 - Siberian Chemical Combine 13 December 1978 (Page 31)
 Tokai-Mura 30 September 1999 (Page 53)
- Think about the following while reading about each accident.
 - Were the conditions / processes routine? What about time of accident?
 - What were the causes of the accident? (Human error, equipment failures etc.)
 - Were procedures being followed? How not?
 - Control of Which MAGIC MERV parameters was lost?

